UNDERGRADUATE FOURTH SEMESTER (HONOURS) EXAMINATIONS, 2022

Subject: Mathematics

Course Code: SH/MTH/403/C-10

Course Title: Ring Theory and Linear Algebra - I

Time: 2 hours

Full Marks: 40

Course ID: 42113

The figures in the margin indicate full marks Notations and symbols have their usual meaning

- 1. Answer *any five* of the following questions: (2X5=10)
 - a) Give examples of commutative and non-commutative rings containing infinitely many divisors of zero.
 - b) Suppose *R* is a ring with unity 1 and *I* is an ideal of *R* such that $1 \in I$. Prove that I = R.
 - c) Is $\{\overline{0}\}$ a prime ideal in $(\mathbb{Z}_6, +_6, \cdot_6)$? Justify your answer.
 - d) Find the kernel of the homomorphism $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, given by $\varphi(a, b) = a, \forall a, b \in \mathbb{Z}$.
 - e) Let *V* be the vector space of all functions from \mathbb{R} to \mathbb{R} over the field (\mathbb{R} , +,·). Examine whether $W = \{f \in V: f \text{ is odd function}\}$ is a subspace or not?
 - f) Find a basis of the subspace *S* of $\mathcal{M}_{2\times 2}(\mathbb{R})$, where *S* is the collection of all symmetric matrices.
 - g) Let *T* be a linear transformation between two finite dimensional vector spaces. If ker *T* is singleton, then show that *T* is injective.
 - h) Let *V* be the vector space of all real valued continuous functions on [0,1] and $T: V \to \mathbb{R}$ be a function defined by $T(f) = \int_0^1 f(x) dx$, $\forall f \in V$. Check whether *T* is linear or not.

2. Answer *any four of* the following questions: (5X4=20)

- a) Let J = {a + ib ∈ Z[i]: a, b ∈ 7Z}. Show that J is an ideal of Z[i].IsJ a maximal ideal? Also find the number of elements of Z[i]/J.
 2+1+2
- b) (i) Prove that every Boolean ring is commutative.
 (ii) Prove that characteristic of an integral domain is either zero or prime. 2+3
- **c)** State and prove the first isomorphism theorem for rings.
- d) (i) Define change of coordinate matrix on a vector space. 2+3

(ii) Let $\mathcal{P}_2(\mathbb{R})$ be the space of all polynomimals of degree upto 2 over the field \mathbb{R} . Find the coordinates of $a + bx + cx^2 \in \mathcal{P}_2(\mathbb{R})$ with respect to the bases $\{x^2, x, 1\}$ and $\{1, 1 + x, 1 + x + x^2\}$.

e) Let V be a vector space over the field F and W be a subspace of V. Prove that

 $\dim (V/W) = \dim V - \dim W.$

f) Let *V* and *W* be two vector spaces over the field \mathbb{F} and $T: V \to W$ be a linear map. Show that *T* is one-one if and only if *T* transforms a linearly independent subset of *V* to a linearly independent subset of *W*.

3. Answer any one of the following questions:

a) (i) Give an example of a prime ideal which is not maximal. Also give an example of a maximal ideal which is not prime.

(ii) If *a*, *b*are two elements of a field *F* and $b \neq 0$, then prove that a = 1 if

$$(ab)^2 = ab^2 + bab - b^2.$$

- (iii) Prove that the sum of two subspaces of a vector space is again a subspace.
- (iv) Let *V* be the vector space of all 5×5 matrices over \mathbb{C} and $B \in V$. Verify whether

 $T: V \rightarrow V$, defined by T(A) = AB - BA for all $A \in V$, is a linear map.

(10X1=10)

- **b)** (i) Examine whether the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is an integral domain or not.
 - (ii) Find all ring homomorphisms from the ring $(\mathbb{Z}_{12}, +, .)$ to the ring $(\mathbb{Z}_{30}, +, .)$.

(iii) Construct two distinct linear maps from \mathbb{R}^3 to \mathbb{R}^3 each of which has its range the subspace spanned by (1,0,-1) and (1,2,2).

(iv) Show that the reflection about the line y = x on \mathbb{R}^2 is a linear map. **2+3+3+2**
